Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients.

نویسندگان

  • Ngai Yin Yip
  • Alberto Tiraferri
  • William A Phillip
  • Jessica D Schiffman
  • Laura A Hoover
  • Yu Chang Kim
  • Menachem Elimelech
چکیده

Pressure retarded osmosis has the potential to produce renewable energy from natural salinity gradients. This work presents the fabrication of thin-film composite membranes customized for high performance in pressure retarded osmosis. We also present the development of a theoretical model to predict the water flux in pressure retarded osmosis, from which we can predict the power density that can be achieved by a membrane. The model is the first to incorporate external concentration polarization, a performance limiting phenomenon that becomes significant for high-performance membranes. The fabricated membranes consist of a selective polyamide layer formed by interfacial polymerization on top of a polysulfone support layer made by phase separation. The highly porous support layer (structural parameter S = 349 μm), which minimizes internal concentration polarization, allows the transport properties of the active layer to be customized to enhance PRO performance. It is shown that a hand-cast membrane that balances permeability and selectivity (A = 5.81 L m(-2) h(-1) bar(-1), B = 0.88 L m(-2) h(-1)) is projected to achieve the highest potential peak power density of 10.0 W/m(2) for a river water feed solution and seawater draw solution. The outstanding performance of this membrane is attributed to the high water permeability of the active layer, coupled with a moderate salt permeability and the ability of the support layer to suppress the undesirable accumulation of leaked salt in the porous support. Membranes with greater selectivity (i.e., lower salt permeability, B = 0.16 L m(-2) h(-1)) suffered from a lower water permeability (A = 1.74 L m(-2) h(-1) bar(-1)) and would yield a lower peak power density of 6.1 W/m(2), while membranes with a higher permeability and lower selectivity (A = 7.55 L m(-2) h(-1) bar(-1), B = 5.45 L m(-2) h(-1)) performed poorly due to severe reverse salt permeation, resulting in a similar projected peak power density of 6.1 W/m(2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Raising the Bar: Increased Hydraulic Pressure Allows Unprecedented High Power Densities in Pressure-Retarded Osmosis

Pressure-retarded osmosis (PRO) has the potential to generate sustainable energy from salinity gradients. PRO is typically considered for operation with river water and seawater, but a far greater energy of mixing can be harnessed from hypersaline solutions. This study investigates the power density that can be obtained in PRO from such concentrated solutions. Thin-film composite membranes with...

متن کامل

Influence of natural organic matter fouling and osmotic backwash on pressure retarded osmosis energy production from natural salinity gradients.

Pressure retarded osmosis (PRO) has the potential to produce clean, renewable energy from natural salinity gradients. However, membrane fouling can lead to diminished water flux productivity, thus reducing the extractable energy. This study investigates organic fouling and osmotic backwash cleaning in PRO and the resulting impact on projected power generation. Fabricated thin-film composite mem...

متن کامل

Modification of Polymeric Membrane for Energy Generation through Salinity Gradient: A Short Review

Salinity gradient energy (SGE) refers to the energy created from the difference in salt concentration between two streams. There are three types of SGE namely, pressure retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix). All these technologies require membrane for the system to be operational. In this short review, the membranes modifications for each principl...

متن کامل

Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis.

Pressure retarded osmosis has the potential to utilize the free energy of mixing when fresh river water flows into the sea for clean and renewable power generation. Here, we present a systematic investigation of the performance limiting phenomena in pressure retarded osmosis--external concentration polarization, internal concentration polarization, and reverse draw salt flux--and offer insights...

متن کامل

Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis.

The Gibbs free energy of mixing dissipated when fresh river water flows into the sea can be harnessed for sustainable power generation. Pressure retarded osmosis (PRO) is one of the methods proposed to generate power from natural salinity gradients. In this study, we carry out a thermodynamic and energy efficiency analysis of PRO work extraction. First, we present a reversible thermodynamic mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 45 10  شماره 

صفحات  -

تاریخ انتشار 2011